A Noise-Aware Coding Scheme for Texture Classification
نویسندگان
چکیده
Texture-based analysis of images is a very common and much discussed issue in the fields of computer vision and image processing. Several methods have already been proposed to codify texture micro-patterns (texlets) in images. Most of these methods perform well when a given image is noise-free, but real world images contain different types of signal-independent as well as signal-dependent noises originated from different sources, even from the camera sensor itself. Hence, it is necessary to differentiate false textures appearing due to the noises, and thus, to achieve a reliable representation of texlets. In this proposal, we define an adaptive noise band (ANB) to approximate the amount of noise contamination around a pixel up to a certain extent. Based on this ANB, we generate reliable codes named noise tolerant ternary pattern (NTTP) to represent the texlets in an image. Extensive experiments on several datasets from renowned texture databases, such as the Outex and the Brodatz database, show that NTTP performs much better than the state-of-the-art methods.
منابع مشابه
A Novel Noise-Robust Texture Classification Method Using Joint Multiscale LBP
In this paper we describe a novel noise-robust texture classification method using joint multiscale local binary pattern. The first step in texture classification is to describe the texture by extracting different features. So far, several methods have been developed for this topic, one of the most popular ones is Local Binary Pattern (LBP) method and its variants such as Completed Local Binary...
متن کاملA Suitable Coding Scheme for Broadband Power-line Communication
This paper introduces three coding strategies for using the Luby Transform (LT) code in a relay aided power-line communication scheme. In the first method, the relay decodes the received packets and re-encodes them for transmission towards the destination. In the second method, the relay only forwardes a random linear combination of its received packets towards the destination, while in the thi...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملVisual Pattern Image Coding by a Morphological Approach (RESEARCH NOTE)
This paper presents an improvement of the Visual Pattern image coding (VPIC) scheme presented by Chen and Bovik in [2] and [3]. The patterns in this improved scheme are defined by morphological operations and classified by absolute error minimization. The improved scheme identifies more uniform blocks and reduces the noise effect. Therefore, it improves the compression ratio and image quality i...
متن کاملFuzzy binary patterns for uncertainty-aware texture representation
A wide range of pattern recognition applications have been based on the Local Binary Pattern (LBP) representation of textures, including texture segmentation, face detection, and biomedical image analysis. The interest of the research community in the LBP texture representation gave rise to plenty of LBP and other Binary Pattern (BP)-based variations. However, noise sensitivity is still a major...
متن کامل